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Abstract

Determining subcellular localization of proteins is considered as an important

step towards understanding their functions. Previous studies have mainly fo-

cused solely on Gene Ontology (GO) as the main feature to tackle this problem.

However, it was shown that features extracted based on GO is hard to be used

for new proteins with unknown GO. At the same time, evolutionary informa-

tion extracted from Position Specific Scoring Matrix (PSSM) have been shown

as another effective features to tackle this problem. Despite tremendous ad-

vancement using these sources for feature extraction, this problem still remains

unsolved. In this study we propose EvoStruct-Sub which employs predicted

structural information in conjunction with evolutionary information extracted

directly from the protein sequence to tackle this problem. To do this we use

several different feature extraction method that have been shown promising in

subcellular localization as well as similar studies to extract effective local and

global discriminatory information. We then use Support Vector Machine (SVM)

as our classification technique to build EvoStruct-Sub. As a result, we are able

to enhance Gram-positive subcellular localization prediction accuracies by up

to 5.6% better than previous studies including the studies that used GO for
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feature extraction.
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1. INTRODUCTION

The functioning of a protein depends on its location in the cell. In fact, it just

functions properly in one or a few locations in the cell. Knowing those locations

can provide important information about functioning of the proteins and how

they interact with other micro-molecules. Therefore, determining protein sub-5

cellular localization is considered as an important step towards understanding

its functioning [1, 2].

Of all proteins, bacterial proteins are the most important proteins to deter-

mine their functions because of their biological aspects which are both harmful

and useful [3]. Some bacteria can cause a wide range of diseases while some10

others play the role of catalyst in biological interactions. Some bacteria are

also widely used to produce antibiotics. Bacteria are categorized as a kind of

prokaryotic microorganism that can be divided in two groups, Gram-positive

and Gram-negative [4]. Gram-positive bacteria are those that are stained dark

blue or violet by Gram-staining while Gram-negative bacteria cannot retain the15

stain, instead taking up the counter-stain and appearing red or pink [3].

During the past two decades and since the introduction of bacterial proteins

subcellular localization, a wide range of machine learning methods with many

different combination and types of features have been proposed to tackle this

problem [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 24, 25,20

26]. For example, PSORT (predictor) used sequence features based on sorting

signal [27], SubLoc (predictor) uses SVM with AAC to obtain higher accuracy

[28], and TargetP (predictor) uses ANN and N-terminal sequence to predict

subcellular locations [29]. In addition Pierleoni et al. used N-terminal, AAC and

alignment profile to predict the subcellular localization [30]. Similarly, Tamura25
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and Akutsu used alignment of block sequence [31] and Chang et al. developed

and used gapped-dipeptide and probabilistic latent semantic analysis method

for prediction of Gram-negative bacterial protein [32]. Lee et al. Despite all

the efforts have been made so far, the protein subcellular localization prediction

problem for bacterial proteins have remained unsolved.30

As pointed in a recent review [33], in the last decade or so, a number of web-

servers were also developed for predicting the subcellular localization of proteins

with both single site and multiple sites based on their sequences information

alone. They can be roughly classified into two series [34]. One is the PLoc series

and the other is iLoc series. The PLoc series contains the six web-servers [4],35

[35], [36], [37], [38], [39] to deal with eukaryotic, human, plant, Gram-positive,

Gram-negative, and virus proteins, while the iLoc series contains the seven web-

servers [40], [41], [42] , [43], [3], [40], [44] to deal with eukaryotic, human, plant,

animal, Gram-positive, Gram-negative, and virus proteins, respectively.

In addition, Huang and Yuan analyzed series of classifiers for subcellular40

localization, but these were limited to single location site. For multi label pre-

diction, Gpos-mplock and Gneg-mplock (predictor) are proposed [36], [38] to

predict protein localization in Gram-positive and Gram-negative bacteria; and

Plant-mploc (predictor) is developed [37] which uses top down strategy to pre-

dict single or multiple protein localization in plant protein. Virus-mploc (pre-45

dictor) [39] was developed with fusion of classifiers and features of functional

domain and gene ontology to predict virus proteins. To increase the quality

of prediction, three revised version of the prediction systems were developed:

iloc-Gpos (predictor) [3], iloc-plant (predictor) [42], iloc-virus (predictor) [44].

Huang and Yuan used AAC, evolution information and PseACC with backward50

propagation (BP) and radial basis function (RBF) neural network to predict

both single and multi-site subcellular proteins.

Many of those studies that have mentioned earlier relied on Gene Ontology

as their feature to tackle this problem [45, 46, 47, 48, 49]. Despite promising

results achieved using GO, it is hard or even for some cases impossible to use55

these features with new proteins with unknown GO. Therefore, there is an
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emphasis on proposing methods that rely on features directly extracted from

protein sequence without using any other extra information or meta data that

are available for just known proteins.

Early studies have focused on using features that are extracted from the oc-60

currence of amino acids from the protein sequence [50, 45, 51]. Later studies try

to incorporate physicochemical based features to enhance the prediction per-

formance [52]. However, the protein subcellular localization prediction problem

remained limited using these sources of features.

More recent studies have started using evolutionary information to tackle65

this problem [2, 53, 54, 5, 7, 55, 6]. Using these features they demonstrated

significant enhancement and even achieved comparable performance compared

to use of GO as input feature. In fact, application of evolutionary based fea-

tures have demonstrated its superiority over using occurrence or physicochem-

ical based features in many similar studies found in the literature [56, 57, 58,70

59, 60, 61]. However, further enhancement have remained out of reach relying

on these features. In addition, many of those studies tried to address Gram-

positive and Gram-negative subcellular localization at the same time. Despite

lots of similarities, still they have their own differences in nature based on their

biological properties. Therefore, similar to all the other subcellular-localization75

prediction problems, a well designed method that is tailored for that specific

task (either Gram-positive or Gram-negative) has a better chance to achieve

more promising results.

To develop a really useful sequence-based statistical predictor for a biological

system as reported in a series of recent publications [20, 21, 22, 23, 24, 33,80

12, 62, 63, 64, 65, 66], one should observe the Chou’s 5-step rule [67]; i.e.,

making the following five steps very clear: (i) how to construct or select a

valid benchmark dataset to train and test the predictor; (ii) how to formulate

the biological sequence samples with an effective mathematical expression that

can truly reflect their intrinsic correlation with the target to be predicted; (iii)85

how to introduce or develop a powerful algorithm (or engine) to operate the

prediction; (iv) how to properly perform cross-validation tests to objectively

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

evaluate the anticipated accuracy of the predictor; (v) how to establish a user-

friendly web-server for the predictor that is accessible to the public. Below, we

are to describe how to deal with these steps one-by- one.90

To address these problems, here we propose EvoStruct-Sub which in addi-

tion to evolutionary information uses predicted structural information to specifi-

cally predict Gram-positive subcellular localization. To do this, we first extract

evolutionary information from Position Specific Scoring Matrix (PSSM) [68]

and predicted secondary structure using SPDER 2.0 [69, 70]. We then extract95

global and local discriminatory information using segmentation technique for

our classification task [71, 72]. We finally use Support Vector Machine (SVM)

to our extracted features to build EvoStruct-Sub. By applying EvoStruct-Sub

to Gram-positive subcellular localization, we achieve up to 95.4% prediction ac-

curacy for this task. In addition, we achieve to over 90.0% prediction accuracy100

for this problem when we use our method for multi-label samples. These results

are over 5.0% better than previously reported results found in the literature

[73, 5, 6].

2. MATERIALS AND METHODS

In this section, we describe the materials and methods required to develop105

EvoStruct-Sub.

2.1. Benchmark Dataset

In this research we use a dataset which have been used widely in literature for

Gram-positive subcellular localization [74], [75], [76], [77], [78]. The benchmark

that we use in this study was introduced in [74], [75], [76], [77]. This bench-110

mark contains total 523 protein samples which belongs to four Gram-positive

subcellular localizations. Among this 523 samples there are total 519 differ-

ent protein sample. Among 519 proteins there are total 515 protein samples

which belongs to only one or single location while the rest 4 protein samples

belongs to two locations. Thus Gram-positive bacterial protein benchmark con-115

tains total 523 (515 + 4 * 2) protein samples. The name and the number of
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proteins in these four locations are shown in Table 1. This dataset is available

at: http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi.

Table 1: Details of Gram-positive bacterial proteins’ dataset

No. subcellular location Total protein samples

1 Cell membrane 174

2 Cell wall 18

3 Cytoplasm 208

4 Extracellular 123

Total number of locative proteins 523

Total number of different proteins 519

2.2. Feature Extraction

We extract evolutionary information from Position Specific Scoring Matrix120

(PSSM) [68] and structural information from the SPIDER 2.0 [70, 69].

PSSM which is produced as the output of PSIBLAST is an scoring matrix

that provide substitution probabilities of a given amino acid with other amino

acids based on its specific position in a protein[68]. PSSM is a L × 20 matrix,

where L is the length of the input protein. Here we use PSIBLAST with three125

iteration and its cut off value (E) set to 0.001 to produce PSSM .

SPIDER 2.0 (Scoring Protein Interaction Decoys using Exposed Residues)

is an accurate method that predict different aspects of local structure such as

secondary structure, torsion angle, and Accessible Surface Area (ASA), simul-

taneously [70, 69]. As an output it produces a L× 8 matrix that include three130

columns of the probability of contribution of amino acids to each of the sec-

ondary structure elements (α-helix, β-strand, coil), one column for ASA, and

four columns for the torsion angles (φ, ψ, θ, τ) [79, 80]. For the rest of this pa-

per, we will refer to this matrix as SPD3 for simplicity. SPD3 has been recently

used in many different fields and demonstrated promising results [81, 82, 83, 84].135

Here we have extracted a wide range of features based on different concepts

that have been investigate in the literature both for PSSM and SPD3. As a
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result the combination of 6 feature groups attained the best result for our task.

This might be due to the consistency of these sets of features with each other.

However, further investigations in future can potentially provide better under-140

standing of available discriminatory information in these feature groups and

consequently provide further prediction enhancement. These 6 feature groups

are explained in detail in the following sections.

2.2.1. PSSM-AAO Feature

PSSM-AAO is amino acid occurrence based on PSSM. This feature group is145

directly extracted from PSSM matrix. It aims at capturing global discriminatory

information regarding the substitution probabilities of the amino acids with

respect to their positions in the protein sequence [85, 86, 87]. This feature is

extracted by summation of the substitution score of a given amino acid with

all the amino acids along the protein sequence. The equation for this feature is150

given below:

PSSM −AAOj =
L∑

i=1

Ni,j (j = 1, ..., 20) (1)

Here N is the corresponding matrix, L is the protein length and j is the respective

column. The dimensionality of this feature vector is 20. Algorithm for extracting

composition feature is shown in Algorithm 1.155

2.2.2. PSSM-SD Feature

This method is specifically proposed to add more local discriminatory in-

formation about how the amino acids, based on their substitution probabilities

(extracted from PSSM), are distributed along the protein sequence [88]. This

method is explained in detail in [71] [5].160

Algorithm for extracting PSSM-SD feature is shown in Algorithm 2.

As shown in [5] using Fp = 25 gives the best result for this method. As

a result, in our final experiment we have adopted Fp = 25 which produces 80

((100÷ 25)× 20 = 80) features.
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Algorithm 1: PSSM-AAO Feature Extraction

1 N ← PSSM Matrix;

2 L← Length of the Protein;

3 C ← Number of matrix column;

4 V ← Empty array of size C;

5 for j = 0; j < C; j = j + 1 do

6 sum← 0;

7 for i = 0; i < L; i = i+ 1 do

8 sum = sum+Ni,j ;

9 end

10 Vj = sum;

11 end

2.2.3. PSSM-SAC Feature165

This feature was introduced in [5, 89, 86]. It was shown that information

about the interaction of neighboring amino acids along the protein sequence can

play an important role in providing significant local discriminatory information

and enhancing protein subcellular localization prediction accuracy [6, 87]. To ex-

tract this information, the concept of auto covariance has been used for different170

segments of proteins. This is done to enforce local discriminatory information

extracted from PSSM. We use the similar approach that was adopted and ex-

plained in [5]. We also use the distance factor of 10 as it was also shown in this

study as the most effective parameter to extract features for protein subcellular

localization.175

2.2.4. Auto Covariance of Predicted Secondary Structure

A correlation factor coupling adjacent residues along the protein sequence is

known as Auto covariance (AC) [59, 90, 72]. It is also known as a kind of variant180

9
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Algorithm 2: PSSM-SD Feature Extraction

1 N ← PSSM Matrix;

2 L← Length of the Protein;

3 C ← Number of matrix column;

4 Fp ← Desired value of Fp, e.g 5, 10, 25;

5 V ← Empty array of size (100÷ Fp)× C;

6 k ← 0 ;

7 for j = 0; j < C; j = j + 1 do

8 Tj ← Sum of jth column;

9 partialSum← 0;

10 i← 0;

11 for tp = Fp; tp <= 50; tp = tp + Fp do

12 while partialSum <= tp× (Tj ÷ 100) do

13 partialSum = partialSum + Ni,j ;

14 i = i + 1;

15 end

16 Vk = i;

17 k = k + 1;

18 end

19 partialSum← 0;

20 i← L;

21 index← 0;

22 for tp = Fp; tp <= 50; tp = tp + Fp do

23 while partialSum <= tp× (Tj ÷ 100) do

24 partialSum = partialSum + Ni,j ;

25 i = i− 1;

26 index = index + 1;

27 end

28 Vk = index;

29 k = k + 1;

30 end

31 end

of auto cross covariance. It is a very powerful statistical tool which is used to

analyze sequences of vectors [91]. The Auto Covariance transformation has been

10
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widely applied in various fields of bioinformatics [92], [93], [94], [95], [96], [97].

Auto Covariance variables are able to avoid producing too many variants. The

equation for this feature is given below:185

AutoCovariancek,j =
1

L

L−k∑

i=1

Ni,jNi+k,j (j = 1, ..., 20 and k = 1...DF ) (2)

where DF is the distance factor. Different values have been tested to find out

the effective value of DF which gives the highest accuracy rate of prediction. In

this research we have tested total 15 values for DF (DF = 1,2,3,4,.......,12,13,14,15)

and took only one value which is DF = 10. We have observed that DF = 10

gives the highest accuracy rate for this task. So, the effective value of DF is190

used as 10 for the employed benchmark. The dimensionality of this feature

vector will be (Number of columns) × DF . Since we are using this method

to extract features based on the predicted secondary structure which consists

of three columns in SPD3, we will have 30 features in total. Algorithm for

extracting auto covariance feature is shown at Algorithm 3.195

2.2.5. Composition of Torsion Angles

This feature is extracted from the Spider SPD3. Torsion angles are shown as

effectives components to capture continuous information based on the secondary

structure of proteins [79, 80]. To calculate this feature we have taken columns

corresponding to torsion angles one at the time, summed up all the values and200

finally divided them by L. The equation for this method is given below:

Compositionj =
1

L

L∑

i=1

Ni,j (3)

Here N is the corresponding matrix, L is the protein length and j is the respec-

tive column. The dimensionality of this feature vector will be (Number of columns)

which is four for our case corresponding to four torsion angles. Algorithm for205

extracting this feature is shown in Algorithm 4.
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Algorithm 3: Auto Covariance Feature Extraction

1 DF ← 10;

2 P ← Matrix from which feature will be extracted;

3 L← Length of the Protein;

4 V ← Empty array of size L× (Number of matrix column);

5 C ← Number of matrix column;

6 for k = 0; k < DF ; k = k + 1 do

7 for j = 0; j < C; j = j + 1 do

8 sum← 0;

9 for i = 0; i < L− k; i = i+ 1 do

10 sum = sum+ Pi,jPi+k,j ;

11 end

12 Vk,j =
sum

L
;

13 end

14 end

2.2.6. One-Lead Bi-gram of ASA

We extract this feature based on the Bi-gram concept that have been previ-

ously used in [87, 60, 6]. Accessible Surface Area (ASA) can provide important

information on the locality of neighboring amino acids in the proteins 3D struc-210

ture [98]. We adopt this method to extract one-lead Bi-gram for the ASA.

Algorithm for extracting one-lead Bi-gram feature is shown in Algorithm 5.

The equation for this feature is given below:

OneLeadBigramk,l =
1

L

L−2∑

i=1

Ni,kNi+2,l (4)

The dimensionality of this feature vector will be:215

(Number of columns)× (Number of columns).

With the explosive growth of biological sequences in the post-genomic era,

12
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Algorithm 4: Composition Feature Extraction

1 N ← Matrix from which feature will be extracted;

2 L← Length of the Protein;

3 C ← Number of matrix column;

4 V ← Empty array of size C;

5 for j = 0; j < C; j = j + 1 do

6 sum← 0;

7 for i = 0; i < L; i = i+ 1 do

8 sum = sum+Ni,j ;

9 end

10 Vj =
sum

L
;

11 end

one of the most important but also most difficult problems in computational bi-

ology is how to express a biological sequence with a discrete model or a vector,

yet still keep considerable sequence-order information or key pattern charac-220

teristic. This is because all the existing machine-learning algorithms can only

handle vector but not sequence samples, as elucidated in a comprehensive re-

view [33]. However, a vector defined in a discrete model may completely lose

all the sequence-pattern information. To avoid completely losing the sequence-

pattern information for proteins, the pseudo amino acid composition or PseAAC225

[45] was proposed. Ever since the concept of Chou’s PseAAC was proposed,

it has been widely used in nearly all the areas of computational proteomics

[99]. Because it has been widely and increasingly used, recently three pow-

erful open access soft-wares, called ’PseAAC-Builder’, ’propy’, and ’PseAAC-

General’, were established: the former two are for generating various modes of230

Chou’s special PseAAC; while the 3rd one for those of Chou’s general PseAAC

[67], including not only all the special modes of feature vectors for proteins

but also the higher level feature vectors such as ”Functional Domain” mode,

”Gene Ontology” mode, and ”Sequential Evolution” or ”PSSM” mode [67].

13
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Algorithm 5: One-Lead Bi-gram Feature Extraction

1 N ← Matrix from which feature will be extracted;

2 L← Length of the Protein;

3 C ← Number of matrix column;

4 V ← Empty array of size C × C;

5 for k = 0; k < C; k = k + 1 do

6 for l = 0; l < C; l = l + 1 do

7 sum← 0;

8 for i = 0; i < L− 2; i = i+ 1 do

9 sum = sum+Ni,kNi+2,l;

10 end

11 Vk,l =
sum

L
;

12 end

13 end

Encouraged by the successes of using PseAAC to deal with protein/peptide235

sequences, the concept of PseKNC [100] was developed for generating various

feature vectors for DNA/RNA sequences that have proved to be very useful as

well [66, 67, 101, 57, 99, 100, 102]. Particularly, recently a very powerful web-

server called ’Pse-in-One’ [101] and its updated version ’Pse-in-One2.0’ [57] have

been established that can be used to generate any desired feature vectors for240

protein/peptide and DNA/RNA sequences according to users’ need or defined

by users’ own. In the current study, we are to use the six features extracted

from the PSSM and SPIDER to formulate the protein sequences for predicting

their subcellular localization.

2.3. Support Vector Machine245

SVM is considered to be one of the best pattern recognition techniques [103].

It is also widely used in Bioinformatics and has outperformed other classifiers

and obtained promising results for protein subcellular localization. It aims to
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reduce the prediction error rate by finding the hyperplane that produces the

largest margin based on the concept of support vector theory. It transforms250

the input data to higher dimensions using the kernel function to be able to find

support vectors (for non linear cases). The classification of some known points

in input space xi is yi which is defined to be either −1 or +1. If x′ is a point in

input space with unknown classification then:

y′ = sin(
n∑

i=1

aiyiK(xi, x
′) + b) (5)

where y′ is the predicted class of point x′. The function K() is the kernel

function, n is the number of support vectors and ai are adjustable weights and

b is the bias. In this study, the SVM classifier is implemented with the LIBSVM

toolbox using the Radial Basis Function (RBF) as its kernel [104]. RBF kernel

is adopted in our experiments due to its better performance than other kernels

functions (e.g. polynomial kernel, linear kernel, and sigmoid). RBF kernel is

defined as follows:

K(xi, xj) = e−γ‖xi−xj‖2

where γ is the regularization parameter, xi and xj are input feature vectors. In255

this study, the γ in addition to the cost parameter C (also called the soft margin

parameter) are optimized using grid search algorithm which is also implemented

in the LIBSVM package. Despite its simplicity, grid search has been shown to

be an effective method to optimize these parameters. We tuned those parameter

using grid search implemented in LIBSVM. As a result we used Cost parameter260

(C) = 3000, and γ = 0.005.

3. VALIDATION METHOD

For our experiment we have adopted two types of validation method namely,

10-fold cross validation and jackknife (also known as leave-one-out) cross vali-

dation.265
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10-Fold Cross Validation: in 10-fold cross-validation, the original sample

set is randomly partitioned into 10 equal sized subsamples. Of the 10 subsam-

ples, a single subsample is retained as the validation data for testing the model,

and the remaining 9 subsamples are used as training data. The cross-validation270

process is then repeated 10 times with each of the 10 subsamples used exactly

once as the validation data. The 10 results from the folds can then be averaged

to produce a single estimation. The advantage of this method is that all samples

are used for both training and validation.

275

Jackknife Test: in this method the original sample is randomly partitioned

into n subsamples where n is the total number of samples in the dataset. Of the

n subsamples a single subsample (means exactly one sample from the sample

dataset) is retained as the validation data for testing the model, and the remain-

ing n− 1 subsamples are used as training data. The cross-validation process is280

then repeated n times, with each of the n subsamples used exactly once as the

validation data. The n results from the folds can then be combined to produce

a single estimation. The advantage of this method is that all observations are

used for both training and validation and each observation is used for validation

exactly once. It can help to build a more general and robust method. The main285

disadvantage of jackknife test is it takes more time to complete a full training

and testing process.

4. EVALUATION MEASUREMENT290

Here we use Sensitivity, Specificity, Matthew’s Correlation Coefficient (MCC)

and accuracy to provide more information about the statistical significance of

our achieved results. Sensitivity, specificity, MCC and accuracy are statistical

measures of the performance of a binary classification test, also known in statis-

tics as classification function. These have been widely used in the literature for295
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protein subcellular localization [48, 105, 41]. Sensitivity (also called the true

positive rate, the recall, or probability of detection in some fields) measures the

proportion of positives that are correctly identified. Specificity (also called

the true negative rate) measures the proportion of negatives that are correctly

identified. The value of sensitivity and specificity varies between 0 and 1. Hav-300

ing specificity, and sensitivity equal to 1 represents a fully accurate model while

0 represents a fully inaccurate. On the other hand, MCC measures the pre-

diction quality of the model. MCC takes into account true and false positives

and negatives and is generally regarded as a balanced measure which can be

used even if the classes are of very different sizes. The accuracy refers to the305

total correctly classified instances over the number of samples present in the

dataset. The equation for calculating sensitivity, specificity, MCC and accuracy

are given below:

Sensitivity =
TP

TP + FN
× 100 (6)

Specificity =
TN

TN + FP
× 100 (7)

MCC =
(TN × TP )− (TN × FP )√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
× 100 (8)

Accuracy =
TP + TN

TP + FN + FP + TN
× 100 (9)

where TP is the number of correctly identified (true positive) samples, FN is

the number of incorrectly rejected samples (false negative), TN is the number of310

correctly rejected (true negative) samples, and FP is the number of incorrectly

accepted samples (false positive).

This set of metrics is valid only for the single-label systems (in which each

protein only belongs to one and only class). For the multi-label systems (in

which a protein might belong to several classes), whose existence has become315

more frequent in system biology [25, 12] and system medicine [106, 107] and
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biomedicine [108], a completely different set of metrics as defined in [109] is

needed. This set of metrics widely used in the literature [110, 111, 112, 113,

64, 114, 115, 63, 116, 117, 65, 57] . Also, the rigorous metrics used in here to

examine the quality of a new predictor for a multi-label system was taken from320

[109].

5. RESULTS AND DISCUSSION

In this section, we present the results of the experiments that were carried

in this study. All the methods were implemented in Python. Each of the

experiments were carried 10 times and only the average is reported as results.325

The general architecture of our method is shown in Figure 1.

Figure 1: The general architecture of EvoStruct-Sub

5.1. Single Label Classification

In this paper we first calculate the single label classification results. For

single label classification we calculate two types of accuracy, one is overall ac-

curacy and another one is average accuracy. To calculate overall accuracy we
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Table 2: Comparison of the results achieved for single label classification

Gram-positive benchmark accuracy

Overall Average

10-Fold

test

Jackknife

test

Jackknife

test

Huang and Yuan [74] 83.7 - -

Pacharawongsakda et al., [78] - - -

Dehzangi et al., [118] 83.6 - -

Dehzangi et al., [5] 87.7 88.2 -

Sharmaet al., [6] 84.3 85 89.8

This Paper - 91.01 95.4

use sensitivity and to calculate average accuracy we use average accuracy.

Average accuracy is computed as follows:

Average Accuracy =
1

n

n∑

j=1

accuracyj

where n is the number of classes in the dataset. A comparison of single label

classification result is shown in Table 2.

As it is shown in here, EvoStruct-Sub achieves to over 90% for overall and330

95.0% average prediction accuracy. In overall, EvoStruct-Sub achieves 91.01%

prediction accuracy which is 6.29% better than the best result reported in the

literature for this task.

5.2. Multi Label Classification

Since our employed benchmark contains multi labeled proteins, besides single335

label classification, we also perform multi-label classification. For calculating

multi-label classification result, we use overall locative accuracy and overall

absolute accuracy. The overall locative accuracy and overall absolute accuracy

are defined as follows:

Locative Accuracy =
1

Ndif

Ndif∑

i=1

Zi (10)
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Table 3: Comparison of the results achieved for multi label classification

Gram-positive benchmark

Locative

Accuracy

Absolute

Accuracy

Sharma et al., [6] 84.8 85.16

This Paper 91.71 90.94

Absolute Accuracy =
1

Ndif

Ndif∑

i=1

Ci (11)

340

where Nloc is the number of locative proteins, Zi = 1 if at least one subcellular

locations of the i − th protein are correctly predicted and 0 otherwise, Ci = 1

if all the subcellular locations of query protein are exactly predicted and 0

otherwise. Therefore the overall absolute accuracy is striker than overall locative

accuracy [34]. The results achieved for EvoStruct-Sub compared to the best345

result reported in the literature [6] is shown in Table 3.

As shown in this table, EvoStruct-Sub achieves to over 90% prediction ac-

curacy for locative and absolute methods. EvoStruct-Sub achieves 91.71% and

90.4% prediction accuracies which are over 6.91% and 5.78% better than those

reported in [6], respectively.350

5.3. Investigating the Impact of Proposed Features on the Achieved Results

Here we investigate the impact of each individual feature group that we pro-

posed in this study in two steps. We first combine features extracted from the

PSSM one by one and record the results. We then combine features extracted

from SPD3 one by one and again record the results. We finally add the fea-355

tures extracted from SPD3 one by one to the features extracted from PSSM. In

this way, we can investigate the impact of our extracted features based on their

sources and how they impact on the prediction performance. This comparison

is shown in Table 4. As it is shown in Table 4, in general, features extracted
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Table 4: Investigating the impact of features extracted from PSSM, SPD3, and their combi-

nations

Average

Sensitivity Specificity MCC

PSSM-AAO 0.62 0.91 0.36

PSSM-AAO, PSSM-SD 0.75 0.94 0.60

PSSM-AAO, PSSM-SD, PSSM-SAC 0.81 0.95 0.62

Auto-Covariance of P(C) P(E) P(H) 0.48 0.86 0.16

Auto-Covariance of P(C) P(E) P(H), Composition-Angles 0.48 0.86 0.10

Auto-Covariance of P(C) P(E) P(H), Composition-Angles, One-Lead Bi-gram

ASA

0.49 0.87 0.12

PSSM-AAO, PSSM-SD, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H) 0.81 0.96 0.61

PSSM-AAO, PSSM-SD, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H),

Composition-Angles

0.81 0.96 0.60

PSSM-AAO, PSSM-SD, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H),

Composition-Angles, One-Lead Bi-gram ASA

0.82 0.96 0.64

from PSSM provide better performance than SPD3. However, the best results360

achieve by adding the SPD3-based features to PSSM-based features. It high-

lights the incremental impact of structural features extracted from SPD3 on the

achieved results and on enhancing the protein subcellular localization prediction

performance.

We then investigate the impact of each of our proposed feature groups indi-365

vidually on the achieved results. To do this, we exclude each of feature group

from the combination of features one at the time. In other words, we exclude

each one of our feature groups which leave us with the combination of 5 remain-

ing feature groups. The result for this experiments are demonstrated in Table

5. As it is shown in Table 5, we still can achieve very good results using the370

combination of 5 feature groups. However, none of those combinations achieve

to the results of using all 6 feature groups at the time. In other words, incor-

poration of all 6 proposed feature groups is vital to enhance protein subcellular

localization prediction problem.
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Table 5: Investigating the impact of each individual feature group on our achieved results.

Average

Sensitivity Specificity MCC

PSSM-AAO, PSSM-SD, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H),

Composition-Angles

0.81 0.96 0.60

PSSM-AAO, PSSM-SD, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H),

One-Lead Bi-gram ASA

0.82 0.96 0.59

PSSM-AAO, PSSM-SD, PSSM-SAC, Composition-Angles, One-Lead Bi-gram

ASA

0.81 0.96 0.69

PSSM-AAO, PSSM-SD, Auto-Covariance of P(C) P(E) P(H), Composition-

Angles, One-Lead Bi-gram ASA

0.73 0.95 0.46

PSSM-AAO, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H), Composition-

Angles, One-Lead Bi-gram ASA

0.63 0.92 0.27

PSSM-SD, PSSM-SAC, Auto-Covariance of P(C) P(E) P(H), Composition-

Angles, One-Lead Bi-gram ASA

0.76 0.95 0.54

6. CONCLUSION375

In this study, we have proposed EvoStruct-Sub for predicting Gram-positive

bacterial protein subcellular localization. To build EvoStruct-Sub we have ex-

tracted a wide range of features from PSSM and SPD3 and among them selected

6 features with total feature vector size of 235. We then used SVM to our ex-

tracted features for the classification task. As our benchmark is multi-label380

dataset, so we have reported both single label and multi label prediction accu-

racies. For single label classification our reported result is 91.01% and for multi

label classification our reported result for locative accuracy is 91.71% and for

absolute accuracy is 90.94%. These results in all cases are up to 6% better than

previously reported results in the literature for Gram-positive subcellular lo-385

calization. These enhancements highlight the effectiveness of EvoStruct-Sub to

explore the potential information embedded in the PSSM and SPD3 for Gram-

positive subcellular localization prediction problem.

As pointed out in [119] and demonstrated in a series of recent publications

(see, e.g., [116, 117]), user-friendly and publicly accessible web-servers represent390

the future direction for developing practically more useful prediction methods

and computational tools. Actually, many practically useful web-servers have
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increasing impacts on medical science, driving medicinal chemistry into an un-

precedented revolution [99], we shall make efforts in our future work to provide

a web-server for the prediction method presented in this paper.395
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